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We discuss the statistical properties of a recently introduced un-
biased stochastic approximation to the score equations for maximum
likelihood calculation for Gaussian processes. Under certain condi-
tions, including bounded condition number of the covariance matrix,
the approach achieves O(n) storage and nearly O(n) computational
effort per optimization step, where n is the number of data sites.
Here, we prove that if the condition number of the covariance matrix
is bounded, then the approximate score equations are nearly optimal
in a well-defined sense. Therefore not only is the approximation ef-
ficient to compute, but it also has comparable statistical properties
to the exact maximum likelihood estimates. We discuss a modifica-
tion of the stochastic approximation in which design elements of the
stochastic terms mimic patterns from a 2n factorial design. We prove
these designs are always at least as good as the unstructured design,
and we demonstrate through simulation that they can produce a sub-
stantial improvement over random designs. Our findings are validated
by numerical experiments on up to 1 million data sites that include
fitting of numerical output from a problem in geodynamics.

1. Introduction. Gaussian process models are widely used in spatial
statistics and machine learning. In most applications, the covariance struc-
ture of the process is at least partially unknown and must be estimated from
the available data. Likelihood-based methods, including Bayesian methods,
are natural choices for carrying out the inferences on the unknown covariance
structure. For large datasets, however, calculating the likelihood function ex-
actly may be difficult or impossible in many cases.

Assuming we are willing to specify the covariance structure up to some
parameter θ ∈ Θ ⊂ Rp, the generic problem we are faced with is computing
the loglikelihood for Z ∼ N(0,K(θ)) for some random vector Z ∈ Rn and
K an n × n positive definite matrix indexed by the unknown θ. In many
applications, there would be a mean vector that also depends on unknown
parameters; but since unknown mean parameters generally cause fewer com-
putational difficulties, for simplicity we will assume the mean is known to be
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0 throughout this work. The simulations in Section 5 and the application in
Section 6 all first preprocess the data by taking a discrete Laplacian, which
would filter out any mean function that was linear in the coordinates, so that
the results in those sections would be unchanged for such mean functions.
The loglikelihood is then, up to an additive constant, given by

L(θ) = −1

2
Z ′K(θ)−1Z − 1

2
log det{K(θ)}.

If K has no exploitable structure, the standard direct way of calculating
L(θ) is to compute the Cholesky decompositon of K(θ), which then al-
lows Z ′K(θ)−1Z and log det{K(θ)} to be computed quickly. However, the
Cholesky decomposition generally requires O(n2) storage and O(n3) compu-
tations, either of which can be prohibitive for sufficiently large n. Iterative
methods often provide an efficient (in terms of both storage and computa-
tion) way of computing K(θ)−1Z and are based on being able to multiply
arbitrary vectors by K(θ) rapidly. Therefore, computing log det{K(θ)} is
commonly the major obstacle in carrying out likelihood calculations.

If our goal is just to find maximum likelihood estimates (MLEs) and the
corresponding Fisher information matrices, we may be able to avoid the
computation of the log determinants by considering the score equations,
which are obtained by setting the gradient of the loglikelihood equal to 0.
Specifically, defining Ki =

∂
∂θi

K(θ), the score equations for θ are given by
(suppressing the dependence of K on θ)

(1.1)
1

2
Z ′K−1KiK

−1Z − 1

2
tr(K−1Ki) = 0

for i = 1, . . . , p. If these equations have a unique solution for θ ∈ Θ, this
solution will generally be the MLE. Computing the first term requires only
one solve in K, but the second term requires n solves and hence may not be
any easier to compute than the log determinant.

Recently Anitescu, Chen and Wang (2012) analyzed and demonstrated a
stochastic approximation of the second term based on the Hutchinson trace
estimator (Hutchinson, 1990). To define it, let U1, . . . , UN be iid random
vectors in Rn with iid symmetric Bernoulli components; that is, taking on
values 1 and −1 each with probability 1

2 . Define a set of estimating equations
for θ by

(1.2) gi(θ,N) =
1

2
Z ′K−1KiK

−1Z − 1

2N

N∑

j=1

U ′
jK

−1KiUj = 0

for i = 1, . . . , p. Throughout this work, Eθ means to take expectations
over Z ∼ N(0,K(θ)) and over the Uj ’s as well. Since Eθ(U ′

1K
−1KiU1) =
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tr(K−1Ki), Eθgi(θ,N) = 0 and (1.2) provides a set of unbiased estimating
equations for θ. Therefore, we may hope that a solution to (1.2) will provide
a good approximation to the MLEs. The unbiasedness of the estimating
equations (1.2) requires only that the components of the Uj’s have mean
0 and variance 1; but, subject to this constraint, Hutchinson (1990) shows
that, assuming the components of the Uj’s are independent, taking them
to be symmetric Bernoulli minimizes the variance of U ′

1MU1 for any n × n
matrix M .

In addition to reducing computations relative to computing the exact
score function, the approximate score function has at least two other at-
tractive features. First, assuming the solves in K are obtained by using
iterative methods and that the elements of K can be computed as needed,
the algorithm uses only O(n) storage. Moreover, if the solves with K can
be preconditioned with an effective condition number independent of n
and if the matrix-vector product can be carried out in O(n) or O(n log n)
time, then the computational effort is about O(n) per optimization step.
The desired preconditioning is achieved under limited circumstances by
Stein, Chen and Anitescu (2012), whereas the fast matrix-vector product
is attainable on regular grids by using circulant embedding or on irregular
ones by fast multipole approximations of the Gaussian process kernel; see
the work of Anitescu, Chen and Wang (2012). Second, if at any point one
wants to obtain a better approximation to the score function, it suffices to
consider additional Uj ’s in (1.2). However, how exactly to do this if using
the dependent sampling scheme for the Uj ’s in Section 4 is not so obvious.

Since this approach provides only an approximation to the MLE, one
must compare it with other possible approximations to the MLE. Many such
approaches exist, including spectral methods, low-rank approximations, co-
variance tapering, and those based on some form of composite likelihood.
All these methods involve computing the likelihood itself and not just its
gradient, and thus all share this advantage over solving (1.2). Note that one
can use randomized algorithms to approximate log detK and thus approxi-
mate the loglikelihood directly (Zhang, 2006). However, this approximation
requires first taking a power series expansion of K and then applying the
randomization trick to each term in the truncated power series; the exam-
ples presented by Zhang (2006) show that the approach does not generally
provide a good approximation to the loglikelihood. Since the accuracy of
the power series approximation to log detK depends on the condition num-
ber of K, some of the filtering ideas described by Stein, Chen and Anitescu
(2012) and used to good effect in Section 4 here could perhaps be of value
for approximating log detK, but we do not explore that possibility.
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Let us consider the four approaches of spectral methods, low-rank ap-
proximations, covariance tapering, and composite likelihood in turn. Spec-
tral approximations to the likelihood can be fast and accurate for gridded
data (Whittle, 1954; Guyon, 1982; Dahlhaus and Künsch, 1987), although
even for gridded data they may require some prefiltering to work well (Stein,
1995). In addition, the approximations tend to work less well as the number
of dimensions increase (Dahlhaus and Künsch, 1987) and thus may be prob-
lematic for space-time data, especially if the number of spatial dimensions
is three. Spectral approximations have been proposed for ungridded data
(Fuentes, 2007), but they do not work as well as they do for gridded data
from either a statistical or computational perspective, especially if large sub-
sets of observations do not form a regular grid. Furthermore, in contrast to
the approach we propose here, there appears to be no easy way of improv-
ing the approximations by doing further calculations, nor is it clear how to
assess the loss of efficiency by using spectral approximations without a large
extra computational burden.

Low-rank approximations, in which the covariance matrix is approxi-
mated by a low-rank matrix plus a diagonal matrix, can greatly reduce
the burden of memory and computation relative to the exact likelihood
(Cressie and Johannesson, 2008; Eidsvik et al., 2012). However, for the kinds
of applications we have in mind, in which the diagonal component of the co-
variance matrix does not dominate the small-scale variation of the process,
these low-rank approximations tend to work poorly and are not a viable
option (Stein, 2007).

Covariance tapering replaces the covariance matrix of interest by a sparse
covariance matrix with similar local behavior (Furrer, Genton and Nychka,
2006). There is theoretical support for this approach (Kaufman, Schervish and Nychka,
2008; Wang and Loh, 2011), but the tapered covariance matrix must be very
sparse to help a great deal with calculating the log determinant of the covari-
ance matrix, in which case, Stein (submitted) finds that composite likelihood
approaches will often be preferable. There is scope for combining covariance
tapering with the approach presented here in that sparse matrices lead to
efficient matrix-vector multiplication, which is also essential for our imple-
mentation of computing (1.2) based on iterative methods to do the matrix
solves. ? show that covariance tapering and low-rank approximations can
also sometimes be profitably combined to approximate likelihoods.

We consider methods based on composite likelihoods to be the main com-
petitor to solving (1.2). The approximate loglikelihoods described by Vecchia
(1988); Stein, Chi and Welty (2004); Caragea and Smith (2007) can all be
written in the following form: for some sequence of pairs of matrices (Aj , Bj),
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j = 1, . . . , q all with n columns, at most n rows and full rank,

(1.3)
q∑

j=1

log fj,θ(AjZ | BjZ),

where fj,θ is the conditional Gaussian density of AjZ given BjZ. As pro-
posed by Vecchia (1988) and Stein, Chi and Welty (2004), the rank of Bj

will generally be larger than that of Aj , in which case the main computation
in obtaining (1.3) is finding Cholesky decompositions of the covariance ma-
trices of B1Z, . . . , BqZ. For example, Vecchia (1988) just lets AjZ be the jth
component of Z and BjZ some subset of Z1, . . . , Zj−1. If m is the largest
of these subsets, then the storage requirements for this computation are
O(m2) rather than O(n2). Comparable to increasing the number of Uj ’s in
the randomized algorithm used here, this approach can be updated to obtain
a better approximation of the likelihood by increasing the size of the subset
of Z1, . . . , Zj−1 to condition on when computing the conditional density of
Zj . However, for this approach to be efficient from the perspective of flops,
one needs to store the Cholesky decompositions of the covariance matrices
of B1Z, . . . , BqZ, which would greatly increase the memory requirements of
the algorithm. For dealing with truly massive datasets, our long-term plan
is to combine the randomized approach studied here with a composite likeli-
hood by using the randomized algorithms to compute the gradient of (1.3),
thus making it possible to consider Aj’s and Bj’s of larger rank than would
be feasible if one had to do exact calculations.

Section 2 provides a bound on the efficiency of the estimating equations
based on the approximate likelihood relative to the Fisher information ma-
trix. The bound is in terms of the condition number of the true covariance
matrix of the observations and shows that if the covariance matrix is well-
conditioned, N does not need to be very large to obtain nearly optimal
estimating equations. Section 3 shows how one can get improved estimating
equations by choosing the Uj ’s in (1.2) based on a design related to 2n facto-
rial designs. Section 4 describes details of the algorithms, including methods
for solving the approximate score equations and the role of preconditioning.
Section 5 provides results of numerical experiments on simulated data. These
results show that the basic method can work well for moderate values of N ,
even sometimes when the condition numbers of the covariance matrices do
not stay bounded as the number of observations increases. Furthermore, the
algorithm with the Uj’s chosen as in Section 3 can lead to substantially more
accurate approximations for a given N . A large-scale numerical experiment
shows that for observations on a partially occluded grid, the algorithm scales
nearly linearly in the sample size. Section 6 applies the methods to the nu-
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merical solution of a set of partial differential equations describing fluid flow
in a system with two dense bodies of different shapes sinking through the
fluid. Because the fluid is treated as incompressible, the pressure field of
the solution should be a harmonic function. Thus, the discrete Laplacian
of the computed pressure field should be very nearly 0, at least away from
the boundaries of the dense bodies. Within certain subdomains, a Gaussian
process model appears to fit the filtered pressure field well, although the
data show clear evidence that the spatial covariance structure differs within
the two bodies, which may provide insight into the nature of the numerical
errors of the solution to the PDE.

2. Variance of Stochastic Approximation of Score Function. This
section gives a bound relating the covariance matrices of the approximate
and exact score functions. Write g(θ,N) for the random vector in Rp whose
ith component is gi(θ,N) as defined in (1.2). For a matrix M , denote its ijth
element byMij. We can evaluate the effectiveness of the estimating equations
in (1.2) by considering the p × p matrices A(θ) with Aij = Eθ

∂
∂θi

gj(θ,N)
and B(θ) the covariance matrix of g(θ,N). General theory for estimating
equations (Heyde, 1997) suggests that making the matrix A(θ)′B(θ)−1A(θ)
as large as possible in the ordering of positive semidefinite matrices is a
natural criterion for assessing the statistical efficiency of estimating equa-
tions. One can easily show that Aij(θ) = −1

2tr(K
−1KiK−1Kj), so that

−A(θ) = I(θ), the Fisher information matrix for θ based on Z (Stein, 1999,
p. 179). Furthermore, writing W i for K−1Ki and defining the matrix J (θ)
by Jij(θ) = cov(U ′

1W
iU1, U ′

1W
jU1), we have

(2.1) Bij(θ) = Iij(θ) +
1

4N
Jij(θ).

As N → ∞, A(θ)′B(θ)−1A(θ) → I(θ), and this limit is what one gets for the
exact score equations (1.1). Indeed, under sufficient regularity conditions on
the model and the estimating equations, I(θ)−A(θ)′B(θ)−1A(θ) is positive
semidefinite (Bhapkar, 1972); hence, the score equations are, in this sense,
generally the optimal unbiased estimating equations.

In fact, as also demonstrated empirically by Anitescu, Chen and Wang
(2012), one may often not needN to be that large to get estimating equations
that are nearly as efficient as the exact score equations. Writing U1j for the
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jth component of U1, we have

Jij(θ) =
n∑

k,#,p,q=1

cov(W i
k#U1kU1#,W

j
pqU1pU1q)

=
∑

k $=#

{cov(W i
k#U1kU1#,W

j
k#U1kU1#) + cov(W i

k#U1kU1#,W
j
#kU1kU1#)}

=
∑

k $=#

(W i
k#W

j
k# +W i

k#W
j
#k)

= tr(W iW j) + tr
{
W i(W j)′

}
− 2

n∑

k=1

W i
kkW

j
kk.(2.2)

As noted by Hutchinson (1990), the terms with k = " drop out in the second
step because U2

1j = 1 with probability 1. When K(θ) is diagonal for all θ,
then N = 1 gives the exact score equations, although in this case computing
tr(K−1Ki) directly would be trivial.

For positive semidefinite matrices C and D write C ( D if D − C is
positive semidefinite. We can bound B(θ) in terms of I(θ) and the condition
number of K.

Theorem 2.1.

(2.3) B(θ) ( I(θ)
{
1 +

(κ(K) + 1)2

4Nκ(K)

}
.

The condition number enters the bound because the W i’s are not sym-
metric. If we instead write tr(K−1Ki) as tr((G′)−1KiG−1), where G is any
square root of K as in K = G′G, we then have

(2.4) hi(θ,N) =
1

2
Z ′K−1KiK

−1Z − 1

2N

N∑

j=1

U ′
j(G

′)−1KiG
−1Uj = 0

for i = 1, . . . , p are also unbiased estimating equations for θ. In this case, the
covariance matrix of the score function is just

(
1+ 1

N

)
I(θ), which is less than

or equal to the bound in (2.3) on B(θ). Whether it is preferable to use (2.4)
rather than (1.2) depends on a number of factors including the sharpness
of the bound in (1.2) and how much more work it takes to compute G−1Uj

than to compute K−1Uj. An example of how the action of such a square
root can be approximated efficiently using only O(n) storage is presented
by Chen, Anitescu and Saad (2011).
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3. Dependent Designs. Choosing the Uj’s independently is simple
and convenient, but one can reduce the variation in the stochastic ap-
proximation by using a more sophisticated design for the Uj ’s; this sec-
tion describes such a design. Suppose that n = Nm for some nonnegative
integer m and that β1, . . . βN are fixed vectors of length N with all en-
tries ±1 for which 1

N

∑N
j=1 βjβ

′
j = I. For example, if N = 2q for a pos-

itive integer q, then the βj ’s can be chosen to be the design matrix for
a saturated model of a 2q factorial design in which the levels of the fac-
tors are set at ±1 (Box, Hunter and Hunter, 2005, Ch. 5). In addition, as-
sume that X1, . . . ,Xm are random diagonal matrices of size N and Yjk,
j = 1, . . . , N ; k = 1, . . . ,m are random variables such that all the diagonal
elements of the Xj ’s and all the Yjk’s are iid symmetric Bernoulli random
variables. Then define

(3.1) Uj =




Yj1X1

...
YjmXm



βj .

One can easily show that for anyNm×NmmatrixM ,E
(
1
N

∑N
j=1U

′
jMUj

)
=

tr(M). Thus, we can use this definition of the Uj’s in (1.2), and the resulting
estimating equations are still unbiased.

This design is closely related to a class of designs introduced by Avron and Toledo
(2011), who propose selecting the Uj’s as follows. Suppose H is a Hadamard
matrix; that is, an n×n orthogonal matrix with elements ±1. Avron and Toledo
(2011) actually consider H a multiple of a unitary matrix, but the special
case H Hadamard makes their proposal most similar to ours. Then, using
simple random sampling (with replacement), they choose N columns from
this matrix and multiply this n × N matrix by an n × n diagonal matrix
with diagonal entries made up of independent symmetric Bernoulli random
variables. The columns of this resulting matrix are the Uj’s. We are also
multiplying a subset of the columns of a Hadamard matrix by a random di-
agonal matrix, but we do not select the columns by simple random sampling
from some arbitrary Hadamard matrix.

The extra structure we impose yields beneficial results in terms of the
variance of the randomized trace approximation as the following calculations
show. Partitioning M into an m × m array of N × N matrices with k"th
block M b

k#, we obtain the following:

(3.2)
1

N

N∑

j=1

U ′
jMUj =

1

N

m∑

k,#=1

N∑

j=1

YjkYj#β
′
jXkM

b
k#X#βj .
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Using Y 2
jk = 1 and X2

k = I, we have

1

N

N∑

j=1

Y 2
jkβ

′
jXkM

b
kkXkβj =

1

N
tr

(
XkM

b
kkXk

N∑

j=1

βjβ
′
j

)

= tr(M b
kkX

2
k)

= tr(M b
kk),

which is not random. Thus, if M is block diagonal (i.e., M b
k# is a matrix

of zeroes for all k )= "), (3.2) yields tr(M) without error. This result is
an extension of the result that independent Uj’s give tr(M) exactly for
diagonal M . Furthermore, it turns out that, at least in terms of the variance
of 1

N

∑N
j=1 U

′
jMUj , for the elements of M off the block diagonal, we do

exactly the same as we do when the Uj ’s are independent. Define Bd(θ) to
be the covariance matrix of g(θ,N) as defined by (1.2) but with the Uj ’s
defined by (3.1) and take T (N,n) to be the set of pairs of positive integers
(k, ") with 1 ≤ " < k ≤ n for which +k/N, = +"/N,. We have the following
inequality, whose proof is given in the Appendix.

Theorem 3.1. For any vector v = (v1, . . . , vp)′,

(3.3) v′B(θ)v − v′Bd(θ)v =
2

N

∑

(k,#)∈T (N,n)

{
N∑

i=1

vi
(
W i

k# +W i
#k

)
}2

.

Thus, B(θ) - Bd(θ), and the Uj ’s defined by (3.1) always yield a more
efficient set of estimating equations than do independent Uj ’s.

How much of an improvement will result from using dependent Uj’s de-
pends on the size of the W i

k#’s within each block. For spatial data, one would
typically group spatially contiguous observations within blocks. How to block
for space-time data is less clear. The results here focus on the variance of the
randomized trace approximation. Avron and Toledo (2011) obtain bounds
on the probability that the approximation error is less than some quantity
and note that these results sometimes give rankings for various randomized
trace approximations different from those obtained by comparing variances.

4. Computational Aspects. Numerically solving the estimating equa-
tions (1.2) requires an outer nonlinear equation solver and an inner linear
equation solver. The nonlinear solver starts at an initial guess θ0 and itera-
tively updates it to approach the zero of (1.2). In each iteration, at θi, the
nonlinear solver typically requires an evaluation of g(θi, N) in order to find
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the next iterate θi+1. In turn, the evaluation of g requires employing a linear
solver to compute the set of vectors K−1Z and K−1Uj , j = 1, . . . , N .

The Fisher information matrix I(θ) and the matrix J (θ) contain terms
involving matrix traces and diagonals. Write diag(·) for a column vector
containing the diagonal elements of a matrix, and ◦ for the Hadamard (ele-
mentwise) product of matrices. For any real matrix A,

tr(A) = EU (U
′AU) and diag(A) = EU (U ◦AU),

where the expectation EU is taken over U , a random vector with iid sym-
metric Bernoulli components. One can unbiasedly estimate I(θ) and J (θ)
by

Iij(θ) ≈
1

2N2

N2∑

k=1

U ′
kW

iW jUk

and

Jij(θ) ≈ 1

N2

N2∑

k=1

U ′
kW

iW jUk +
1

N2

N2∑

k=1

U ′
kW

i(W j)′Uk

− 2

N2

N2∑

k=1

(Uk ◦W iUk)
′(Uk ◦W jUk).

Note that here the set of vectors Uk need not be the same as that in (1.2), but
we use the same notation for simplicity. In this approximation, evaluating
I(θ) and J (θ) also requires linear solves since W iUk = K−1(KiUk) and
(W i)′Uk = Ki(K−1Uk).

4.1. Linear Solver. We consider an iterative solver for solving a set of
linear equations Ax = b for a symmetric positive definite matrix A ∈ Rn×n,
given a right-hand vector b. Since the matrix A (in our case the covariance
matrix) is symmetric positive definite, the conjugate gradient algorithm is
naturally used. Let xi be the current approximate solution, and let ri =
b − Axi be the residual. The algorithm finds a search direction qi and a
step size αi to update the approximate solution, that is, xi+1 = xi + αiqi,
such that the search directions qi, . . . , q0 are mutually A-conjugate (i.e.,
(qi)′Aqj = 0 for i )= j) and the new residual ri+1 is orthogonal to all the
previous ones, ri, . . . , r0. One can show that the search direction is a linear
combination of the current residual and the past search direction, yielding
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the following recurrence formulas:

xi+1 = xi + αiqi,

ri+1 = ri − αiAqi,

qi+1 = ri+1 + βiqi,

where αi =
〈
ri, ri

〉
/
〈
Aqi, qi

〉
and βi =

〈
ri+1, ri+1

〉
/
〈
ri, ri

〉
, and 〈·, ·〉 de-

notes the vector inner product. Letting x∗ be the exact solution, that is,
Ax∗ = b, then xi enjoys a linear convergence to x∗:

(4.1) ‖xi − x∗‖A ≤ 2

(√
κ(A) − 1√
κ(A) + 1

)i

‖x0 − x∗‖A,

where ‖ · ‖A = 〈A·, ·〉
1
2 is the A-norm of a vector.

Asymptotically, the time cost of one iteration is upper bounded by that
of multiplying A by qi, which typically dominates other vector operations
when A is not sparse. Properties of the covariance matrix can be exploited
to efficiently compute the matrix-vector products. For example, when the
observations are on a lattice (regular grid), one can use the fast Fourier trans-
form (FFT), which takes time O(n log n) (Chan and Jin, 2007). Even when
the grid is partial (with occluded observations), this idea can still be applied.
On the other hand, for nongridded observations, one can use a combination
of direct summations for close-by points and multipole expansions of the co-
variance kernel for faraway points to compute the matrix-vector products in
O(n log n), even O(n), time (Barnes and Hut, 1986; Greengard and Rokhlin,
1987). In the case of Matérn-type Gaussian processes and in the context of
solving the stochastic approximation (1.2), such fast multipole approxima-
tions were presented by Anitescu, Chen and Wang (2012). Note that the
total computational cost of the solver is the cost of each iteration times the
number of iterations, the latter being usually much less than n.

The number of iterations to achieve a desired accuracy depends on how
fast xi approaches x∗, which, from (4.1), is in turn affected by the condition
number κ of A. Two techniques can be used to improve convergence. One
is to perform preconditioning in order to reduce κ; this technique will be
discussed in the next section. The other is to adopt a block version of the
conjugate gradient algorithm. This technique is useful for solving the linear
system for the same matrix with multiple right-hand sides. Specifically, de-
note by AX = B the linear system one wants to solve, where B is a matrix
with s columns, and the same for the unknown X. Conventionally, matri-
ces such as B are called block vectors, honoring the fact that the columns
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of B are handled simultaneously. The block conjugate gradient algorithm
is similar to the single-vector version except that the iterates xi, ri and qi

now become block iterates Xi, Ri, and Qi and the coefficients αi and βi

become s× s matrices. The detailed algorithm is not shown here; interested
readers are referred to O’Leary (1980). If X∗ is the exact solution, then Xi

approaches X∗ linearly:

(4.2) ‖(Xi)j − (X∗)j‖A ≤ Cj

(√
κs(A)− 1√
κs(A) + 1

)i

, j = 1, . . . , s,

where (Xi)j and (X∗)j are the jth column of Xi and X∗, respectively;
Cj is some constant dependent on j but not i; and κs(A) is the ratio be-
tween λn(A) and λs(A) with the eigenvalues λk sorted increasingly. Com-
paring (4.1) with (4.2), we see that the modified condition number κs is less
than κ, which means that the block version of the conjugate gradient algo-
rithm has a faster convergence than the standard version does. In practice,
since there are many right-hand sides (i.e., the vectors Z, Uj’s and KiUk’s),
we always use the block version.

4.2. Preconditioning/Filtering. Preconditioning is a technique for reduc-
ing the condition number of the matrix. Here, the benefit of preconditioning
is twofold: it encourages the rapid convergence of an iterative linear solver,
and, if the effective condition number is small, it strongly bounds the uncer-
tainty in using the estimating equations (1.2) instead of (1.1) for estimating
parameters (see Theorem 2.1). In numerical linear algebra, precondition-
ing refers to applying a matrix M , which approximates the inverse of A
in some sense, to both sides of the linear system of equations. In the sim-
ple case of left preconditioning, this amounts to solving MAx = Mb for
MA better-conditioned than A. With certain algebraic manipulations, the
matrix M enters into the conjugate gradient algorithm in the form of mul-
tiplication with vectors. For the detailed algorithm, see Saad (2003). This
technique does not explicitly compute the matrix MA, but it requires that
the matrix-vector multiplications with M can be efficiently carried out.

For covariance matrices, certain filtering operations are known to reduce
the condition number, and some can even achieve an optimal precondition-
ing in the sense that the condition number is bounded by a constant inde-
pendent of the size of the matrix (Stein, Chen and Anitescu, 2012). Note
that these filtering operations may or may not preserve the rank/size of the
matrix. When the rank is reduced, then some loss of statistical information
results when filtering, although similar filtering is also likely needed to apply
spectral methods for strongly correlated spatial data on a grid (Stein, 1995).
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Therefore, we consider applying the same filter to all the vectors and matri-
ces in the estimating equations, in which case, (1.2) becomes the stochastic
approximation to the score equations of the filtered process. Evaluating the
filtered version of g(θ,N) becomes easier because the linear solves with the
filtered covariance matrix converge faster.

4.3. Nonlinear Solver. The choice of the outer nonlinear solver is prob-
lem dependent. The purpose of solving the score equations (1.1) or the esti-
mating equations (1.2) is to maximize the loglikelihood function L(θ). There-
fore, investigation into the shape of the loglikelihood surface helps identify
an appropriate solver.

In this paper, we consider the power law generalized covariance model
(α > 0):

G(x; θ) =

{
Γ(−α/2)rα, if α/2 /∈ N
(−1)1+α/2rα log r, if α/2 ∈ N

where x = [x1, . . . , xd] ∈ Rd denotes coordinates, θ is the set of parameters
containing α > 0, " = ["1, . . . , "d] ∈ Rd, and r is the elliptical radius

r =

√
x21
"21

+ · · · +
x2d
"2d

.

Allowing a different scaling in different directions may be appropriate when,
for example, variations in a vertical direction may be different from those in a
horizontal direction. The function G is conditionally positive definite; there-
fore, only the covariances of authorized linear combinations of the process
are defined (Chilés and Delfiner, 1999, Sec. 4.3). In fact, G is p-conditionally
positive definite if and only if 2p + 2 > α (see Chilés and Delfiner, 1999,
Sec. 4.4), so that applying the discrete Laplace filter (which gives second-
order differences) at least 3α/24 times to the observations yields a set of
authorized linear combinations. Stein, Chen and Anitescu (2012) show that
if a discrete Laplace filter is applied τ times and α+ d = 4τ , the covariance
matrix has a bounded condition number independent of the matrix size.
Therefore, if the grid is {δj} for some fixed spacing δ and j a vector whose
components take integer values between 0 and m, then applying the filter
τ = round((α + d)/4) times, we obtain the covariance matrix

Kij = cov{∆τZ(δi),∆τZ(δj)},

where ∆ denotes the discrete Laplace operator

∆Z(δj) =
d∑

p=1

{Z(δj − δep)− 2Z(δj) + Z(δj + δep)},
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with ep meaning the unit vector along the pth coordinate. The resulting K
is both positive definite and well-conditioned.

Figure 1 shows a sample loglikelihood surface for d = 1 based on an
observation vector Z simulated from a 1D partial regular grid spanning the
range [0, 100], using parameters α = 1.5 and " = 10. (A similar 2D grid is
shown later in Figure 2.) The peak of the surface is denoted by the solid
white dot, which is not far away from the truth θ = (1.5, 10). The white
dashed curve (profile of the surface) indicates the maximum loglikelihoods
L given α. The curve is also projected on the α − L plane and the α − "
plane. One sees that the loglikelihood value has small variation (ranges from
48 to 58) along this curve compared with the rest of the surface, whereas
the parameter " changes the likelihood substantially.
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Fig 1. A sample loglikelihood surface for the power law generalized covariance kernel, with
profile curve and peak plotted.

A Newton-type nonlinear solver starts at some initial point θ0 and tries to
approach the optimal point (one that solves the score equations).1 Let the

1To facilitate understanding, we explain here the process for solving the score equa-
tions (1.1). Conceptually it is similar to that for solving the estimating equations (1.2).
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current point be θi; then the solver finds a direction qi (typically the inverse
of the Jacobian multiplied by θi, that is, qi = ∇θg(θi, N)−1θi) and a step
size αi in some way to increase the value of L evaluated at θi+1 = θi + αiqi

or, equivalently, is closer to a solution of the score equations. Corresponding
to Figure 1, the solver starts somewhere on the surface and quickly climbs
to a point along the profile curve. However, this point might be far away
from the peak. It turns out that along this curve a Newton-type solver is
usually unable to find a direction with an appropriate step size to numeri-
cally increase L, in part because of the narrow ridge indicated in the figure.
The variation of L along the normal direction of the curve is much larger
than that along the tangent direction. Thus, the iterate θi is trapped and
cannot advance to the peak. In such a case, even though the estimate of α
and the score function is reasonably close to its solution, the estimate of "
could be erroneous.

To successfully solve the estimating equations, we consider each compo-
nent of " an implicit function of α. Denote by

(4.3) gi("1, . . . , "d, α) = 0, i = 1, . . . , d+ 1,

the estimating equations, ignoring the fixed variable N . The implicit func-
tion theorem indicates that a set of functions "1(α), . . ., "d(α) exists around
an isolated zero of (4.3) in a neighborhood where (4.3) is continuously dif-
ferentiable, such that

gi("1(α), . . . , "d(α), α) = 0, for i = 2, . . . , d+ 1.

Therefore, we need only to solve the equation

(4.4) g1("1(α), . . . , "d(α), α) = 0

with a single variable α. Numerically, a much more robust method than a
Newton-type method exists for finding a root of a one-variable function. We
use the method of Forsythe, Malcolm and Moler (1976) for solving (4.4).
This method in turn requires the evaluation of the left-hand side of (4.4).
Then, the "i’s are evaluated by solving g2, . . . , gd+1 = 0 fixing α, whereby a
Newton-type algorithm is empirically proven to be an efficient method.

5. Experiments. In this section, we show a few experimental results
based on a partially occluded regular grid. The rationale for using such a
partial grid is to illustrate a setting where spectral techniques do not work
so well but efficient matrix-vector multiplications are available. A partially
occluded grid can occur, for example, when observations of some surface
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characteristics are taken by a satellite-based instrument and it is not possible
to obtain observations over regions with sufficiently dense cloud cover. The
grid has a physical range [0, 100] × [0, 100], with a hole in a disc shape of
radius 10 located at (40, 60). An illustration of the grid, with size 32 × 32,
is shown in Figure 2. The matrix-vector multiplication is performed by first
doing the multiplication using the full grid via circulant embedding and
FFT, followed by removing the entries corresponding to the hole of the grid.
Recall that the covariance model is defined in Section 4.3, along with the
explanation of the filtering step.
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Fig 2. A 32× 32 grid with a region of missing observations in a disc shape.

When working with dependent samples, it is advantageous to group nearby
grid points such that the resulting blocks have a plump shape and that there
are as many blocks with size exactly N as possible. For an occluded grid,
this is a nontrivial task. Here we use a simple heuristic to effectively group
the points. We divide the grid into horizontal stripes of width +

√
N, (in case

+
√
N, does not divide the grid size along the vertical direction, some stripes

have a width +
√
N,+ 1). The stripes are ordered from bottom to top, and

the grid points inside the odd-numbered stripes are ordered lexicographically
in their coordinates, that is, (x, y). In order to obtain as many contiguous
blocks as possible, the grid points inside the even-numbered stripes are or-
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dered lexicographically according to (−x, y). This ordering gives a zigzag
flow of the points starting from the bottom-left corner of the grid. Every N
points are grouped in a block. The coloring of the grid points in Figure 2
shows an example of the grouping. Note that because of filtering, observa-
tions on either an external or internal boundary are not part of any block.

5.1. Choice of N . One of the most important factors that affect the ef-
ficacy of approximating the score equations is the value N . Theorem 2.1
indicates that N should increase at least like κ(K) in order that the ad-
ditional uncertainty introduced by approximating the score equations be
comparable with that caused by the randomness of the sample Z. In the
ideal case, when the condition number of the matrix (possibly with filter-
ing) is bounded independent of the matrix size n, then even taking N = 1
is sufficient to obtain estimates with the same rate of convergence as the
exact score equations. When κ grows with n, however, a better guideline for
selecting N is to consider the growth of I−1J .

Figure 3 plots the condition number and the norm of I−1J for varying
sizes of the matrix. Although performing a Laplacian filtering will yield
provably bounded condition numbers only for the case α = 2, one sees that
the filtering is also effective for the cases α = 1 and 1.5. Moreover, the norm
of I−1J is significantly smaller than κ when n is large, and in fact it does
not seem to grow with n. This result indicates the bound in Theorem 1 is
sometimes far too conservative and that using a fixed N can be effective
even when κ grows with n.
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Fig 3. Growth of κ compared with that of ‖I−1J ‖, for power law kernel in 2D. Left:
α = 1; right: α = 1.5.

Of course, the norm of I−1J is not always bounded. In Figure 4 we
show two examples using the Matérn covariance kernel with smoothness
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parameter ν = 1 and 1.5 (essentially α = 2 and 3). Without filtering, both
κ(K) and ‖I−1J ‖ grow with n, although the plots show that the growth of
the latter is significantly slower than that of the former.
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Fig 4. Growth of κ compared with that of ‖I−1J ‖, for Matérn kernel in 1D, without
filtering. Left: ν = 1; right: ν = 1.5.

5.2. A 32 × 32 Grid Example. Here, we show the details of solving the
estimating equations (1.2) using a 32 × 32 grid as an example. Setting the
truth α = 1.5 and " = (7, 10) (that is, θ = (1.5, 7, 10)), consider exact and
approximate maximum likelihood estimation based on the data obtained by
applying the Laplacian filter once to the observations. One way to evaluate
the approximate MLEs is to compute the ratios of the square roots of the
diagonal elements of V −1, where V = A(θ)′B(θ)−1A(θ), to the square roots
of the diagonal elements of I−1. We know these ratios must be at least 1, and
that the closer they are to 1, the more nearly optimal the resulting estimating
equations based on the approximate score function are. For N = 64 and
independent sampling, we get 1.0156, 1.0125, and 1.0135 for the three ratios,
all of which are very close to 1. Since one generally cannot calculate V −1

exactly, it is also worthwhile to compare a stochastic approximation of the
diagonal values of V −1 to their exact values. When this was done once for
N = 64 and by using N2 = 100 in the approximation, the three ratios
obtained were 0.9821, 0.9817, and 0.9833, which are all close to 1.

Figure 5 shows the performance of the resulting estimates. For N = 1, 2,
4, 8, 16, 32, and 64, we simulated 100 realizations of the process on the 32×32
occluded grid, applied the discrete Laplacian once, and then computed ex-
act MLEs and approximations using both independent and dependent (as
described in the beginning of Section 5) sampling. When N = 1, the in-
dependent and dependent sampling schemes are identical, so only results
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for independent sampling are given. Figure 5 plots, for each component of
θ, the mean squared differences between the approximate and exact MLEs
divided by the mean squared errors for the exact MLE’s. As expected, these
ratios decrease with N , particularly for dependent sampling. Indeed, de-
pendent sampling is much more efficient than is independent sampling for
larger N ; for example, the results in Figure 5 show that dependent sam-
pling with N = 32 yields better estimates for all three parameters than does
independent sampling with N = 64.
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Fig 5. Effects of N (1, 2, 4, 8, 16, 32, 64). In each plot, the curve with the plus sign
corresponds to the independent design, whereas that with the circle sign corresponds to
the dependent design. The horizontal axis represents N . In plots (a), (c), and (d), the
vertical axis represents the mean squared differences between the approximate and exact
MLEs divided by the mean squared errors for the exact MLEs, for the components α, $1,
and $2, respectively. In plot (b), the vertical axis represents the mean squared difference
between the approximate and exact loglikelihood value.
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5.3. Large-Scale Experiments. We experimented with larger grids (in the
same physical range). We show the results in Table 1 and Figure 6 for
N = 64. When the matrix becomes large, we are unable to compute I and
V exactly. Based on the preceding experiment, it seems reasonable to use
N2 = 100 in approximating I and V . Therefore, the eigenvalues in Table 1
were computed only approximately.

Table 1
Estimates and estimated standard errors for increasingly dense grids. The last three rows

show the ratio of standard errors of the approximate to the exact MLE’s.

Grid size 32× 32 64× 64 128× 128 256× 256 512× 512 1024× 1024
1.5355 1.5084 1.4919 1.4975 1.5011 1.5012

θ̂N 6.8507 6.9974 7.1221 7.0663 6.9841 6.9677
9.2923 10.062 10.091 10.063 9.9818 9.9600
0.0393 0.0125 0.0045 0.0018 0.0007 0.0003√

λ(I−1) 0.3231 0.1515 0.0732 0.0360 0.0179 0.0089
0.9588 0.6599 0.4257 0.2621 0.1566 0.0912

√
λ(V −1)√
λ(I−1)

1.0016 1.0008 1.0004 1.0003 1.0002 1.0001
1.0076 1.0077 1.0077 1.0077 1.0077 1.0077
1.0063 1.0070 1.0073 1.0074 1.0075 1.0076
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Fig 6. Running time for increasingly dense grids.

One sees that as the grid becomes larger (denser), the variance of the
estimates decreases as expected. The matrices I−1 and V −1 are comparable
in all cases, and in fact the ratios stay roughly the same across different
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sizes of the data. The experiments were run for data size up to around one
million, and the scaling of the running time versus data size is favorable.
The dashed curve in Figure 6 is a fit to the recorded times using a function
in the form of n log n times a constant. One sees a strong agreement of the
recorded times with the scaling O(n log n).

6. Application. Fluid flows, such as ice melt in water or molten rock
rising from the Earth’s lower mantle, are described by partial differential
equations (Furuichi, May and Tackley, 2011). Simulations can be conducted
to study the dynamics and to enrich our understanding of the behavior of
fluids. Nevertheless, finite-dimensional approximations of such phenomena
mean that their computation inevitably contains errors, which in the case of
large, multidimensional problems may be quite large when combined with
limited computational resources. The effects of such numerical errors on the
output must be quantified to achieve a predictive simulation capability. The
typical numerical analysis thought process attempts to bound such errors
using asymptotic considerations that in many circumstances results in exces-
sively conservative bounds. In order to circumvent such shortcomings, new
statistical-based approaches have been developed for quantifying numerical
and other approximation errors (Glimm et al., 2003; Lee, 2005). In this vein,
we investigate stochastic models for the residual error of phenomena mod-
eled by partial differential equations that are subsequently approximated in
a finite-dimensional space by finite-element techniques.

To this end, we study a set of geodynamics data simulated from the
variable coefficient Stokes flow:

−∇ · (ηDu− p1)− ρg = 0,

∇ · u = 0,

where u, the velocity and p, the pressure are unknowns, η is the given
effective viscosity, ρg is the gravitational body force, and D denotes the
symmetric gradient, that is, Du = 1

2 (∇u+ (∇u)′). Figure 7(a) shows the
computed pressure on the square [0, 100]×[0, 100] discretized by a 1024×1024
grid.2 This simulates the situation where two dense bodies, a disk and a
rotated rectangle, with high viscosity (ρ = 1, η = 100) are sinking in a
background fluid with low density and viscosity (ρ = 0.2, η = 1). This

2The system is solved by using a finite-element method with Q1-Q1 elements, stabilized
by the technique of Dohrmann and Bochev (2004). The conservation properties of this
discretization may not be sufficient for serious geodynamics simulations, but it is simple
and serves our purposes. Homogeneous Dirichlet boundary conditions are imposed at all
walls.
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problem is a version of the SINKER benchmark problem (May and Moresi,
2008).
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Fig 7. Stokes flow data. The bottom plots are QQ plots of the filtered data inside the two
dense bodies.

Because the fluid is treated as incompressible, an exact solution of the
equations is harmonic, so its Laplacian is 0. We should therefore expect the
discrete Laplacian of the numerical results to show little variation, and this
is indeed the case. The majority of the filtered data is close to zero, whereas
large variations occur on the boundary of the two bodies, at which pressure
can change rapidly.

The filtered data range over several orders of magnitude, so Figure 7(b)
plots the rescaled logarithms of the absolute values of the filtered results.
One clearly sees the large variations on the boundaries of the two bodies, and
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hence a stationary Gaussian process model for the filtered output over the
entire region makes no sense. However, within the two dense bodies, as long
as one stays sufficiently far from their boundaries, a stationary Gaussian
process model for the filtered results may be appropriate. Figures 7(c) and
(d) show the QQ-plots of the filtered data inside these two regions. The plots
indicate remarkable agreement with a normal distribution, which supports
the modeling of the filtered data using a Gaussian process. Plots of bivari-
ate distributions (not shown) also show good agreement with a stationary
Gaussian process model.

The extremely small values for the filtered data in Figures 7(c) and (d)
show that the discrete Laplacian of the observations within the specified
regions are nearly 0. Thus, it would not make sense to model the unfiltered
observations using a model that did not take account of the near harmonic
behavior of the data. Therefore, in this setting, filtering the data with the
discrete Laplacian is not just a statistical or computational convenience to
yield better conditioned covariance matrices; it is essential to obtaining a
reasonable model for the data.

We fitted two models. In the first model, the (unfiltered) data has a mean
function whose discrete Laplacian is 0 and whose generalized covariance
function is the power-law function as described in Section 4.3:

G1(x;α, θ0) = θ0 · Γ(−α/2)|x|α.

The second model adds a nugget effect to the generalized covariance func-
tion:

G2(x;α, θ0, θ1) = θ0 · [ Γ(−α/2)|x|α + θ11x=0 ].

Table 2 shows the fitted results using N = 16 sampling vectors in the es-
timating equations. Since the filtered data Z is small, we pre-scaled Z by
6×1012 before the fitting. The fitted parameter θ0 corresponds to the scaled
data. The ratios between

√
λ(V −1) and

√
λ(I−1) indicate that usingN = 16

is sufficient to approximate the score equations.
The square roots of the eigenvalues of the inverse of the Fisher matrix

provide approximate standard errors for the estimates. In all cases, these
standard errors are small compared with the estimates themselves, indi-
cating that all parameters are estimated well. Not surprisingly, the relative
standard errors for α̂ and θ̂0 are much larger when a nugget effect is included
in the model.

We also compared the smoothness parameter α across different models
and different regions. In the power-law model G1, the values of α are small in
both regions, suggesting that the underlying processes are extremely rough.
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Table 2
Estimates and estimated standard errors for Stokes flow data.

Data Circle Rectangle Circ.+Rect. (independent)

# points 1.5 × 105 7.9× 104 2.3× 105

Model G1:

θ̂N =



 α

θ0



 0.1819 0.3015

681.92 1177.2

√
λ(I−1)

5.0421 × 10−4 9.8030 × 10−4

1.3101 × 10+1 1.8553 × 10+1

√
λ(V −1)√
λ(I−1)

1.0011 1.0013

1.0278 1.0276

Model G2:

θ̂N =





α

θ0

θ1





2.1316 3.4353 2.6059

5336.9 8677.6 7130.1

0.9092 0.4371 0.6325

√
λ(I−1)

2.0741 × 10−2 4.2246 × 10−2 1.9346 × 10−2

1.5558 × 10+2 1.9206 × 10+2 1.4942 × 10+2

3.5081 × 10−3 2.2745 × 10−3 1.9564 × 10−3

√
λ(V −1)√
λ(I−1)

1.0283 1.0289 1.0284

1.0284 1.0284 1.0284

1.0010 1.0009 1.0010
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Such small fitted values of α are not uncommon when a nugget effect is omit-
ted from a model when it is needed. When the nugget effect is included, much
larger estimated values of α are obtained. Specifically, α̂ is then between 2
and 4 in both regions, which corresponds to a model for the observations of
a function whose discrete Laplacian is 0 plus a random process with exactly
one derivative in any direction plus a white noise term.

The last column of Table 2 fits G2 to both regions simultaneously assum-
ing independence between the processes in the two regions. This model is
a submodel of the model in which the parameter values are allowed to be
different in the two regions (and, again, independence across regions is as-
sumed), so we could consider using a likelihood ratio test to assess whether
the model with common parameters provides an adequate description of the
data relative to the model with separate parameters. We now run into a
problem with only having derivatives of the loglikelihood and not the log-
likelihood itself. We could in principle recover the difference in loglikelihoods
between the two fitted models from derivatives, but doing so would require
either many derivative evaluations (which could then be numerically inte-
grated along some path to obtain the difference in loglikelihoods), or we
could try using Taylor series approximations to the loglikelihood. In the
present case, however, the estimated standard errors of the parameters are
sufficiently small that there is no doubt the model with separate parameters
for each region fits better than the model with common parameters. For
example, based on asymptotic normality, the approximate 95% confidence
intervals for α in the circle and rectangle are, respectively, (2.091, 2.172) and
(3.352, 3.518), indicating that a model with a common α is not tenable. Sim-
ilarly, there is overwhelming evidence that adding a nugget effect improves
the fit over the models without a nugget effect in both regions.

It is not clear why the fitted models are so different in the two regions,
but it is presumably related to the different shapes of the dense bodies. It
would be interesting to explore the details of the finite element method to
try to understand why the rectangle might produce deviations from discrete
harmonicity that have a smoother continuous component (larger α̂) and a
smaller nugget (θ̂0θ̂1 = 3793 for the rectangle and 4852 for the circle).

7. Discussion. We have demonstrated how derivatives of the loglikeli-
hood function for a Gaussian process model can be accurately and efficiently
calculated in situations for which direct calculation of the loglikelihood it-
self would be much more difficult. Being able to calculate these derivatives
enables us to find solutions to the score equations and to verify that these
solutions are at least local maximizers of the likelihood. However, if the score
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equations had multiple solutions, then, assuming all the solutions could be
found, it might not be so easy to determine which was the global maximizer.
Furthermore, as we saw in the previous section, it is not straightforward to
obtain likelihood ratio statistics when only derivatives of the loglikelihood
are available.

Perhaps a more critical drawback of having only derivatives of the log-
likelihood occurs when using a Bayesian approach to parameter estimation.
The likelihood needs to be known only up to a multiplicative constant, so, in
principle, knowing the gradient of the loglikelihood throughout the parame-
ter space is sufficient for calculating the posterior distribution. However, it is
not so clear how one might calculate an approximate posterior based on just
gradient and perhaps Hessian values of the loglikelihood at some discrete
set of parameter values. It is even less clear how one could implement an
MCMC scheme based on just derivatives of the loglikelihood.

Despite this substantial drawback, we consider the development of likeli-
hood methods for fitting Gaussian process models that are nearly O(n) in
time and, perhaps more importantly O(n) in memory, to be essential for
expanding the scope of application of these models. We believe that the
present work provides a useful step in this direction.

APPENDIX A: PROOFS

Proof of Theorem 2.1. Since K is positive definite, it can be written
in the form SΛS′ with S orthogonal and Λ diagonal with elements λ1 ≥
. . . ≥ λn > 0. Then Qi := S′KiS is symmetric,

(A.1) tr(W iW j) = tr(S′K−1SS′KiSS
′K−1SS′KjS) = tr(Λ−1QiΛ−1Qj)

and, similarly,

(A.2) tr
{
W i(W j)′

}
= tr(Λ−1QiQjΛ−1).

For real v1, . . . , vp,

(A.3)
p∑

i,j=1

vivj

n∑

k=1

W i
kkW

j
kk =

n∑

k=1

{
p∑

i=1

viW
i
kk

}2

≥ 0.

Furthermore, by (A.1),

(A.4)
p∑

i,j=1

vivjtr(W
iW j) =

n∑

k,#=1

1

λkλ#

{
p∑

i=1

viQ
i
k,#

}2

,
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and, by (A.2),

(A.5)
p∑

i,j=1

vivjtr
{
W i(W j)′

}
=

n∑

k,#=1

1

λ2k

{
p∑

i=1

viQ
i
k,#

}2

.

Write γk# for
∑p

i=1 viQ
i
k,# and note that γk# = γ#k. Consider finding an upper

bound to

∑p
i,j=1 vivjtr

{
W i(W j)′

}
∑p

i,j=1 vivjtr(W
iW j)

=

∑n
k=1

a2kk
λ2
k
+

∑
k># a

2
k#

(
1
λ2
k
+ 1

λ2
!

)

∑n
k=1

a2kk
λ2
k
+
∑

k>#
2a2k!
λkλ!

.

Think of maximizing this ratio as a function of the a2k#’s for fixed λk’s. We
then have a ratio of two positively weighted sums of the same positive scalars
(the a2k#’s for k ≥ "), so this ratio will be maximized if the only positive a2k#
values correspond to cases for which the ratio of the weights, here

(A.6)

1
λ2
k
+ 1

λ2
!

2
λkλ!

=
1 +

(
λk
λ!

)2

2λk
λ!

,

is maximized. Since we are considering only k ≥ ", λk
λ!

≥ 1 and 1+x2

2x is
increasing on [1,∞), so (A.6) is maximized when k = n and " = 1, yielding

∑p
i,j=1 vivjtr

{
W i(W j)′

}
∑p

i,j=1 vivjtr(W
iW j)

≤ κ(K)2 + 1

2κ(K)
.

The theorem follows by putting this result together with (2.1), (2.2), and
(A.3).

Proof of Theorem 3.1. Define βia to be the ath element of βi andX#a

the ath diagonal element of X#. Then note that for k )= " and k′ )= "′ and
a, b ∈ {1, . . . , N},

(Ui,(k−1)N+aUi,(#−1)N+b, Uj,(k′−1)N+a′Uj,(#′−1)N+b′)

= (βiaβibYikXkaYi#X#b, βja′βjb′Yjk′Xk′a′Yj#′X#′b′)

have the same joint distribution as for independent Uj’s. Specifically, the two
components are independent symmetric Bernoulli random variables unless
i = j, a = a′, b = b′ and k = k′ )= " = "′ or i = j, a = b′, b = a′ and
k = "′ )= " = k′, in which case, they are the same symmetric Bernoulli
random variable. Straightforward calculations yield (3.3).
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